224 research outputs found

    Time-Explicit Simulation of Wave Interaction in Optical Waveguide Crossings at Large Angles

    Get PDF
    The time-explicit finite-difference time-domain method is used to simulate wave interaction in optical waveguide crossings at large angles. The wave propagation at the intersecting structure is simulated by time stepping the discretized form of the Maxwell’s time dependent curl equations. The power distribution characteristics of the intersections are obtained by extracting the guided-mode amplitudes from these simulated total field data. A physical picture of power flow in the intersection is also obtained from the total field solution; this provides insights into the switching behavior and the origin of the radiations

    Emerging applications of integrated optical microcombs for analogue RF and microwave photonic signal processing

    Full text link
    We review new applications of integrated microcombs in RF and microwave photonic systems. We demonstrate a wide range of powerful functions including a photonic intensity high order and fractional differentiators, optical true time delays, advanced filters, RF channelizer and other functions, based on a Kerr optical comb generated by a compact integrated microring resonator, or microcomb. The microcomb is CMOS compatible and contains a large number of comb lines, which can serve as a high performance multiwavelength source for the transversal filter, thus greatly reduce the cost, size, and complexity of the system. The operation principle of these functions is theoretically analyzed, and experimental demonstrations are presented.Comment: 16 pages, 8 figures, 136 References. Photonics West 2018 invited paper, expanded version. arXiv admin note: substantial text overlap with arXiv:1710.00678, arXiv:1710.0861

    Photonic RF and microwave reconfigurable filters and true time delays based on an integrated optical Kerr frequency comb source

    Full text link
    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwaveComment: 15 pages, 11 Figures, 60 Reference

    Pulsed Quantum Frequency Combs from an Actively Mode-locked Intra-cavity Generation Scheme

    Get PDF
    We introduce an intra-cavity actively mode-locked excitation scheme for nonlinear microring resonators that removes the need for external laser excitation in the generation of pulsed two-photon frequency combs. We found a heralded anti-bunching dip of 0.245 and maximum coincidence-to-accidental ratio of 110 for the generated photon pairs

    On-chip Quantum State Generation by Means of Integrated Frequency Combs

    Get PDF
    Summary form only given. This paper investigates different approaches to generate optical quantum states by means of integrated optical frequency combs. These include the generation of multiplexed heralded single-photons, the first realization of cross-polarized photon-pairs on a photonic chip, the first generation of multiple two-photon entangled states, and the first realizations of multi-photon entangled quantum states on a photonic chip

    Generation of Complex Quantum States Via Integrated Frequency Combs

    Get PDF
    The generation of optical quantum states on an integrated platform will enable low cost and accessible advances for quantum technologies such as secure communications and quantum computation. We demonstrate that integrated quantum frequency combs (based on high-Q microring resonators made from a CMOS-compatible, high refractive-index glass platform) can enable, among others, the generation of heralded single photons, cross-polarized photon pairs, as well as bi- and multi-photon entangled qubit states over a broad frequency comb covering the S, C, L telecommunications band, constituting an important cornerstone for future practical implementations of photonic quantum information processing
    • …
    corecore